Recruiting & HR

11 pages
5 views

Vibrational spectroscopic (FT-IR, FT-Raman, SERS) and quantum chemical calculations of 3-(10,10-dimethyl-anthracen-9-ylidene)-N,N,N-trimethylpropanaminiium chloride (Melitracenium chloride

of 11
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Share
Description
Vibrational spectroscopic (FT-IR, FT-Raman, SERS) and quantum chemical calculations of 3-(10,10-dimethyl-anthracen-9-ylidene)-N,N,N-trimethylpropanaminiium chloride (Melitracenium chloride
Transcript
  Vibrational spectroscopic (FT-IR, FT-Raman, SERS) and quantumchemical calculations of 3-(10,10-dimethyl-anthracen-9-ylidene)-N,N,N-trimethylpropanaminiium chloride (Melitracenium chloride) Y. Shyma Mary a,b, ⇑ , P.J. Jojo b , Christian Van Alsenoy c , Manpreet Kaur d , M.S. Siddegowda d ,H.S. Yathirajan d , Helena I.S. Nogueira e , Sandra M.A. Cruz e a Department of Physics, Bharathiar University, Coimbatore, Tamilnadu, India b Department Physics, Fatima Mata National College, Kollam, Kerala, India c Department of Chemistry, University of Antwerp, B2610 Antwerp, Belgium d Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, India e Chemistry Department, CICECO and TEMA-NRD, University of Aveiro, 3810-193 Aveiro, Portugal h i g h l i g h t s   IR, Raman and SERS spectra werereported.   The wavenumbers are calculatedtheoretically using Gaussian09software.   The wavenumbers are assigned usingPED analysis.   The geometrical parameters are inagreement with the XRD data. g r a p h i c a l a b s t r a c t FT-IR, FT-Raman spectra of Melitracenium chloride were recorded and analyzed. SERS spectrum wasrecorded in silver colloid. The vibrational wavenumbers were computed using DFT quantum chemicalcalculations. The data obtained from wavenumber calculations are used to assign vibrational bandsobtained in infrared and Raman spectra as well as in SERS of the studied molecule. Potential energy dis-tributionwasdoneusingGAR2PEDprogram.Thegeometricalparameters(SDD)ofthetitlecompoundarein agreement with the XRD results. The presence anthracene ring modes in the SERS spectrum suggest atiltedorientation withrespect tothemetal surface. Themethyl groups inthetitlemoleculearealsocloseto the metal surface. The first hyperpolarizability, NBO analysis and molecular electrostatic potentialresults are also reported. a r t i c l e i n f o  Article history: Received 18 August 2013Received in revised form 29 September2013Accepted 2 October 2013Available online 12 October 2013 a b s t r a c t FT-IR, FT-Raman spectra of Melitracenium chloride were recorded and analyzed. SERS spectrum wasrecorded in silver colloid. The vibrational wavenumbers were computed using DFT quantum chemicalcalculations. The data obtained from wavenumber calculations are used to assign vibrational bandsobtained in infrared and Raman spectra as well as in SERS of the studied molecule. Potential energy dis-tributionwasdoneusingGAR2PEDprogram.Thegeometricalparameters(SDD)ofthetitlecompoundarein agreement with the XRD results. The presence anthracene ring modes in the SERS spectrum suggest atiltedorientation withrespect tothemetal surface. Themethyl groups inthetitlemoleculearealsoclose 1386-1425/$ - see front matter    2013 Elsevier B.V. All rights reserved.http://dx.doi.org/10.1016/j.saa.2013.10.021 ⇑ Corresponding author at: Department of Physics, Bharathiar University, Coim-batore, Tamilnadu, India. Tel.: +91 9995901472. E-mail address:  yshymamary@rediffmail.com (Y.S. Mary).Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 120 (2014) 370–380 Contents lists available at ScienceDirect Spectrochimica Acta Part A: Molecular andBiomolecular Spectroscopy journal homepage: www.elsevier.com/locate/saa  Keywords: MelitraceniumSERSFT-IR FT-RamanPED to the metal surface. The first hyperpolarizability, NBO analysis and molecular electrostatic potentialresults are also reported.   2013 Elsevier B.V. All rights reserved. Introduction Surface enhanced Raman scattering (SERS) spectroscopy is awell established and highly effective technique that enables to ob-served Raman scattering from species present at trace concentra-tions [1,2]. It is a useful tool in surface chemistry because of itshigh sensitivity and potential in providing useful informationregarding metal adsorbate interactions [3,4]. Melitracen (3-(10,10-dimethylanthracen-9(10H)-N,N-dimethylpropan-1-amine)is a tricyclic antidepressant for the treatment of depression andanxiety. Itshydrochloridederivativehasactionsandeffectssimilarto amitriptyline and is administered orally in the treatment of depression. Melitrcen, a bipoar thymoleptic with activating prop-erties in low dose, is usually co-administered with flupentixol inorder to decrease the side effects. This combination has none seri-ous side effects due to low drug dosage [5]. The propantheline, aquaternary ammonium salt, is a cholinergic muscarinic receptorantagonist and although infrequently used in clinic, it can be em-ployed as an antispasmodic in reducing gastrointestinal motility[6]. Anthracene the first material producing electroluminescenceand along with its derivatives has still been attracting attentionfrom the view point of application and basic science [7]. Chandranetal., [8]reportedthevibrationalspectroscopicstudyofananthra-cene derivative experimentally and theoretically. Anthracenederivatives are very significant building blocks for the synthesisof dyes and pigments [9,10], pharmaceuticals [11,12], agrochemi- cals [13], light emitting devices [14], additives of paper making [15], as well as potentially useful as a significant insecticide, sinceit is postulated as the chemical which gives teak its resistance toinsect and fungal attacks. Anthracycline was one of the widelystudieddrugsowingtoitsnotablyclinicalefficacyagainstavarietyof human cancers [16]. Shamsipur et al., [17] reported the quanti- tative structure–propertyrelationshipstudy of acidityconstantsof some anthraquinone derivatives using multiple linear regressionand partial least squares procedures. Zagotto et al. [18] reported1,4-anthracene-9,10-dione derivatives as potential anticanceragents. In the present work, the vibrational spectroscopic studyalong with surface enhanced Raman scattering of 3-(10,10-di-methyl-anthracen-9-ylidene)-N,N,N-trimethylpropanaminiiumchloride (Melitracenium chloride; C 21 H 26 N +  Cl  ) are reported. Experimental Thetitle compoundwas obtainedasagift samplefromR.L. FineChem. Ltd., Bangalore, India. The crystal structure is already re-ported by Fun et al. [19]. In the title compound, the cyclohexanering adopts a chair conformation. The dihedral angle between theterminal benzene rings is 40.4  . In the crystal, ions are linkedthrough intermolecular N A H  Cl and C A H  Cl hydrogen bonds,forming supra-molecular layers parallel to the bc plane. The FT-IR spectrum (Fig. 1) was recorded using KBr pellets on a DR/JascoFT-IR 6300 spectrometer. The FT-Raman spectra (Figs. 2 and 3)were obtained on a Bruker RFS 100/s, Germany. For excitation of the spectra the emission of Nd:YAG laser was used, excitationwavelength 1064nm.An aqueous silver colloid was used in the SERS experiments,prepared by reduction of silver nitrate by sodium citrate usingthe Lee–Meisel method [20]. Solutions of the samples were madein methanol (0.05mmol in 1mL of solvent) and transferred usinga micropipette into the silver colloid (20 l l in 0.5mL of colloid)such that the overall concentration of sample was 2   10  3 -molL   1 . Colloid aggregation was induced by addition of an aque-ous solution of MgCl 2  (1 drop of a 2molL   1 solution). Fig. 1.  FT-IR spectrum of Melitracenium chloride. Fig. 2.  FT-Raman spectrum of Melitracenium chloride. Fig. 3.  SERS spectrum of Melitracenium chloride. Y.S. Mary et al./Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 120 (2014) 370–380  371  Polyvinylpyrrolidone was then used to stabilize the colloid (1 dropof a 1%aqueoussolution). Thefinal colloidmixturewas placedinaglass tube and the Raman spectrum registered. Computational details In the present work, the density functional theory (B3LYP) atdifferent basis sets (6-31g ⁄ , 6-31++G and SDD) were adopted tocalculate the vibrational frequencies of the title molecule. All thetheoretical calculations were performed using the Gaussian09Wprogram package [21] with the default convergence criteria, with-out any constraint onthe geometry [22]. The vibrational spectra of the title compound were obtained by taking second derivative of energy, computed analytically. The optimized structural parame-ters used in the vibrational frequency calculations at DFT level tocharacterize all stationary points as minima using the Gaussviewanimation program [23]. Vibrational frequencies were computedat DFT level which has reliable one to one correspondance toexperimental IR and Raman frequencies. In the present study wehave used the scaling factor 0.9613 [24] for DFT method. A com-parison of the frequencies calculated with the experimental valuesrevealed that the SDD basis set result shows very good agreementwith the experimental observations. The Stuttgart/Dresden effec-tive core potential basis set (SDD) [25] was chosen particularly be-cause of its advantage of using faster calculations with relativelybetter accuracy and structures [26]. At the optimized structure(Fig. 4) of the examined species, no imaginarywavenumber modeswere obtained, proving that a true minimum on the potential sur-face was found. The potential energy distribution (PED) is calcu-lated with the help of GAR2PED software package [27]. Thecalculated geometrical parameters are provided as supportinginformation (Table S1). Results and discussion The observedIR and Ramanbands as well as calculated(scaled)wavenumbers and assignments are given in Table 1. IR and Raman spectra The vibrations of the CH 2  group, the asymmetricstretch  t as CH 2 ,symmetric stretch  t s CH 2 , the scissoring vibrations  d CH 2  and wag-ging vibration  x CH 2 , appear in the regions 2940±20, 2885±45,1440±10 and 1340±25cm  1 , respectively [28,29]. These bandsare observed at 2986, 2945, 2906cm  1 in IR spectrum, 2982,2907, 1469, 1368, 1315cm  1 in Raman spectrum and at 3017,2992, 2942, 2900, 1471, 1458, 1365, 1310cm  1 theoretically(SDD) for the title compound. According to the literature [30],thescissoringmodeofCH 2  groupgivesrisetoacharacteristicbandnear 1465cm  1 in the Raman spectrum. This mode is unambigu-ously correlated with the strong band at 1469cm  1 in the Ramanspectrum.ThetwistingandrockingvibrationsoftheCH 2  groupap-pear in the regions [28] 1300–1200 and 900–700cm  1 . Thesemodes are assigned at 1289, 1234, 812cm  1 in the IR spectrum,1286, 1233, 815cm  1 in the Raman spectrum and at 1298, 1234,824, 787cm  1 theoretically (SDD).For methyl group, the asymmetric stretching vibration is ob-served in the region 2950–3080cm  1 and the symmetric stretch-ing appear in the region[28] 2900–2970cm  1 . The computedwavenumbers (SDD) of modes corresponding to the  t as CH 3  and  t s- CH 3  group are in the range 3081–3006 and 2958–2921cm  1 . Thebands observed at 3066, 3023, 3006cm  1 in the IR spectrum andat 3058, 3008, 2966, 2948cm  1 in the Raman spectrum are as-signed as the stretching modes of the CH 3  groups. The asymmetricdeformations [28] of the methyl group are expected in the regions1465±20 and 1445±25cm  1 . The overlap between the two re-gions is quite considerable so that for many molecules the defor-mations often coincide. The symmetric deformation [28] of methyl group appears in the region 1380±20cm  1 . The SDD cal-culations give bands in the range 1494–1438 and 1423–1371cm  1 as asymmetric and symmetric deformations of themethylgroup,respectively.Thesedeformationmodesareobservedat 1467, 1412, 1378cm  1 in the IR spectrum and at 1440, 1411,1389cm  1 in the Raman spectrum. Also the theoretically (SDD)calculated values for rocking modes of the methyl group are1217, 1156, 1113, 1095, 1051, 1000, 996, 954cm  1 which are ex-pected in the regions [28] 1200–900cm  1 . The bands observed at1091, 1044cm  1 in the IR spectrum and at 1218, 1150, 1108,1090, 1047cm  1 in the Raman spectrum are assigned as the rock-ing modes of the CH3 groups. The torsion modes of methyl groupare observed below 400cm  1 .TheCNstretchingmodeisreportedintherange950–1150cm  1 [28,31]andinthepresentcaseC 30 –N 2 bandisassignedat1076cm  1 theoretically (SDD). Joseph et al. [32] reported 1084cm  1 as CNstretching mode theoretically. Chandran et al. [8] reported the CNstretching modes at 1042, 1067cm  1 theoretically and at1066cm  1 intheIRspectrumandat1064cm  1 intheRamanspec-trum. Fanchiang and Tseng [33] reported CN stretching modes at1037and 1120cm  1 . Withnitrogenbondedmethyl molecules, theC A N stretching mode is expected in the range 900–1000cm  1 [28] and in the present case, the SDD calculations give these CN(C 37 A N 2  andC 33 A N 2 ) stretchingmodesat996and954cm  1 .TheC 25 H 26 modesareobservedat1356,853cm  1 intheIRspec-trum, 3031, 852cm  1 in the Raman spectrum and at 3033, 1312,851cm  1 theoretically,asexpected[28–30].Forthetitlecompound,theC @ Cstretchingbandisassignedat1634cm  1 intheIRspectrum,1635cm  1 in the Raman spectrum and at 1624cm  1 theoretically(SDD) and the C A C stretching modes are observed at 1005cm  1 inthe IR spectrum, 1006, 937cm  1 in the Raman spectrum and at1030,1022, 1002,934cm  1 theoretically(SDD)[28–30].The CH stretching vibrations [28] absorb between 3120 and3000cm  1 . For the title compound, the CH stretching modes areobserved at 3147, 3092, 3066cm  1 and the SDD calculations givebands in the range 3068–3116cm  1 as CH stretching modes.The anthracene ring stretching modes are reported in the range1267–1625cm  1 in the IR spectrum, 1255–1622cm  1 in the Ra-man spectrum and in the range 1259–1622cm  1 theoretically byChandran et al. [8]. In the present case, the bands observed at1598, 1574, 1532, 1449, 1325, 1254, 1129, 1091cm  1 in the IR  Fig. 4.  Optimized geometry (SDD) of Melitracenium chloride.372  Y.S. Mary et al./Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 120 (2014) 370–380   Table 1 Vibrational assignments of Melitracenium chloride. B3LYP/6-31G B3LYP/6-31++G B3LYP/SDD IR Raman SERS Assignments t  IR  I  R  A  t  IR  I  R  A  t  IR  I  R  A  t t t 3102 19.13 165.63 3111 19.81 182.46 3116 20.85 219.77 3147 – –  t CH(99)3098 21.72 156.44 3107 23.31 170.85 3112 28.36 175.03 – – –  t CH(86)3091 17.56 98.18 3099 19.59 97.94 3106 23.88 41.57 – – –  t CH(99)3084 26.18 166.41 3092 27.46 163.65 3098 29.94 106.29 – – –  t CH(99)3077 19.61 146.02 3083 19.48 138.47 3088 19.37 108.78 3092 – –  t CH(99)3073 6.15 36.91 3078 14.18 100.19 3081 13.41 36.12 – – –  t as CH 3 (95)3072 13.94 106.46 3075 5.72 35.11 3081 13.70 75.56 – – –  t CH(95)3063 1.50 66.96 3068 1.44 68.21 3070 1.41 4819 – – 3070  t CH(91)3061 0.39 58.05 3066 0.24 57.09 3068 11.32 34.23 3066 – –  t as CH 3 (90)3059 5.72 66.58 3063 5.21 62.87 3068 1.49 63.08 3066 – –  t CH(88)3043 9.99 97.70 3048 12.15 106.50 3054 23.22 101.35 – 3058 –  t as CH 3 (91)3039 4.68 38.41 3045 2.26 23.63 3049 4.55 20.37 – – 3039  t as CH 3 (99)3030 16.34 39.97 3029 17.88 43.06 3033 27.22 40.23 – 3031 –  t C 25 H 26 (90)3015 23.64 52.10 3012 31.29 69.43 3025 42.07 57.36 3023 – –  t as CH 3 (96)3013 17.62 36.09 3010 15.55 18.61 3021 17.38 16.30 3023 – –  t as CH 3 (100)3008 38.46 75.33 3005 10.48 7.21 3018 57.18 71.40 – – –  t as CH 3 (100)3005 10.77 5.50 3005 41.60 84.70 3017 11.82 7.24 – – –  t as CH 2 (89)2995 16.89 59.01 2991 17.24 56.81 3006 16.15 40.64 3006 3008 –  t as CH 3 (92)2989 4.46 65.81 2982 5.41 65.93 2992 8.52 60.63 2986 2982 –  t as CH 2 (93)2960 16.84 194.56 2959 16.19 272.52 2958 20.12 239.09 – 2966 2957  t s CH 3 (92)2954 12.06 14.18 2954 13.76 25.93 2951 19.10 30.97 – 2948 –  t s CH 3 (93)2944 19.13 116.66 2939 10.07 19.39 2942 9.56 10.92 2945 – –  t s CH 2 (92)2938 9.22 16.67 2937 27.60 162.81 2935 25.52 136.06 – – –  t s CH 3 (97)2930 28.19 76.56 2921 35.52 106.13 2921 31.29 86.76 – – 2915  t s CH 3 (100)2909 17.02 477.27 2901 13.85 505.86 2900 32.73 656.13 2906 2907 –  t s CH 2 (98)1619 2415.61 77.81 1626 0.39 432.54 1624 0.55 507.99 1634 1635 1634  t C @ C(60)1595 1.42 124.23 1586 1.88 131.55 1588 2.02 128.59 1598 1599 1590  t Ring(58), t C @ C(18)1589 1.99 121.98 1580 2.37 157.66 1582 2.41 159.02 1574 1582 –  t Ring(58), t C @ C(22)1572 0.52 12.83 1563 0.01 18.90 1562 0.02 15.38 – 1568 –  t Ring(65)1562 0.12 14.44 1553 0.03 15.52 1550 0.04 17.49 1532 – 1542  t Ring(59)1496 6.49 18.21 1505 11.96 12.87 1494 12.86 13.94 – – 1499  d as CH 3 (89)1480 15.36 0.89 1499 42.23 1.25 1477 45.41 0.91 – – –  d as CH 3 (57), d CH 2 (16)1480 17.28 0.83 1494 30.26 3.07 1474 14.05 0.47 – – –  d as CH 3 (88)1473 4.48 14.21 1487 10.28 0.66 1471 29.07 8.06 – 1469 –  d as CH 3 (27), d CH 2 (50)1472 17.77 14.68 1483 3.50 5.72 1466 22.36 3.50 1467 – –  d as CH 3 (40), d CH 2 (10)1466 21.95 11.76 1476 6.84 10.19 1464 6.11 12.75 – – –  d as CH 3 (14), t Ring(31)1464 4.68 9.13 1475 17.19 10.54 1461 14.68 21.23 – – –  d as CH 3 (53), d CH 2 (22)1460 4.91 26.09 1473 0.42 4.14 1458 1.02 13.61 – – –  d as CH 3 (21), d CH 2 (57)1459 3.99 8.55 1468 9.86 18.79 1455 8.85 29.10 – – 1456  d as CH 3 (61)1457 4.91 23.29 1467 1.39 15.60 1452 6.60 5.43 – – –  d as CH 3 (67)1453 24.42 3.65 1465 5.56 10.98 1448 30.29 9.57 1449 1449 –  d as CH 3 (16), t Ring(47)1446 3.80 1.84 1464 3.17 4.45 1445 6.51 17.16 – – –  d as CH 3 (55)1440 1.73 9.03 1457 30.13 10.18 1442 10.33 17.24 - 1440 –  t Ring(52), d as CH 3 (19), d CH 2 (12)1437 14.59 7.16 1453 3.79 2.70 1438 2.27 3.65 – 1440 -  d as CH 3 (58), d CH 2 (22)1436 11.47 14.59 1446 1.32 9.29 1428 3.12 10.89 – – –  t Ring(40), d CH 2 (19)1432 7.24 6.24 1443 14.82 6.65 1423 23.45 0.88 – – –  d s CH 3 (82)1405 2.47 4.66 1433 13.89 0.66 1421 23.03 6.91 – – –  t Ring(52), d s CH 3 (12)1394 327.38 18.08 1417 5.88 1.71 1412 4.79 1.68 1412 1411 –  d s CH 3 (91)1391 7.27 2.69 1399 11.34 0.93 1392 13.68 0.74 – 1389 –  d s CH 3 (91)1371 108.12 10.36 1377 12.36 21.21 1371 14.22 2.29 1378 – –  d s CH 3 (93)1366 3.80 6.60 1375 7.46 26.90 1365 9.61 10.69 – 1368 –  d CH 2 (63)1360 10.53 46.30 1373 7.60 13.07 1362 14.94 45.19 1356 – –  d C 25 H 26 (57), d CH 2 (18), t Ring(10)1304 21.83 49.53 1322 1.38 9.44 1318 1.82 11.25 1325 1324 1327  t Ring(95)1301 30.88 25.52 1311 13.42 63.37 1310 5.26 8.67 – 1315 –  d CH 2 (50), t Ring(10)1298 22.55 53.27 1307 1.16 9.24 1304 5.79 6.75 – – –  t Ring(70)1287 5.85 2.51 1296 5.47 6.36 1298 13.87 87.04 1289 1286 –  d CH 2 (81) ( continued on next page ) Y.S. Mary et al./Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 120 (2014) 370–380  373   Table 1  ( continued ) B3LYP/6-31G B3LYP/6-31++G B3LYP/SDD IR Raman SERS Assignments t  IR  I  R  A  t  IR  I  R  A  t  IR  I  R  A  t t t 1271 0.47 31.45 1290 1.31 37.55 1279 2.16 38.18 – – –  d CH(42), t Ring(10)1263 10.87 1.53 1283 1.56 10.84 1273 3.48 2.04 – – 1273  d CH 2 (17), d CH(55)1236 30.78 77.65 1252 21.13 57.39 1245 13.02 119.81 1254 1255 –  t Ring(48), d CH(25)1229 8.24 28.95 1237 7.85 68.61 1234 23.97 17.06 1234 1233 1230  d CH 2 (44), d CH 3 (18)1215 5.11 15.74 1225 2.76 2.32 1221 5.34 22.84 – – –  t Ring(51), d CH 3 (12)1205 244.37 28.94 1217 3.86 21.57 1217 9.04 6.90 – 1218  d CH 3 (54), t CN(18)1203 65.41 9.24 1214 2.39 2.39 1211 2.72 6.22 – – –  t Ring(40), d CH 3 (13)1163 3.00 15.79 1178 0.03 11.12 1167 0.16 6.04 1166 1170 1165  d CH(76)1157 14.79 6.53 1177 0.52 2.74 1166 0.42 5.04 1166 1170 1165  d CH(85)1154 1.20 6.88 1168 0.71 20.81 1162 0.30 23.65 – 1165 –  d CH(11), t Ring(50)1153 9.29 17.95 1161 8.17 6.04 1156 10.62 6.83 – 1150 –  d CH 3 (58), t CN(11)1140 32.63 5.50 1151 3.57 3.33 1141 2.49 7.93 1146 – 1144  d CH(51), d CH 3 (10)1132 4.39 26.30 1139 1.76 29.98 1134 2.63 24.28 1129 1130 –  d CH(38), t Ring(42)1113 0.59 4.44 1117 1.05 6.00 1113 1.39 7.33 – 1108 –  t Ring(36), d CH 3 (32)1096 3.33 2.14 1104 3.20 3.37 1095 4.73 2.85 1091 1090 –  d CH 3 (55), t Ring(33)1076 1.49 2.13 1085 0.46 0.90 1076 1.75 3.27 – – –  t CN(55), t Ring(22)1068 2.01 4.95 1079 3.86 9.02 1071 2.92 3.78 1067 1066 –  d CH(38), t Ring(14)1055 1.99 2.56 1069 2.11 2.20 1058 3.63 3.16 – – –  d CH 2 (12), d CH(53)1050 1.61 7.77 1060 0.90 4.03 1051 1.79 8.35 1044 1047 1041  d CH 3 (77)1037 1.80 64.65 1037 5.25 72.54 1030 5.78 23.52 – – –  t CC(44), t Ring(16)1032 11.12 6.06 1037 10.60 35.23 1027 4.50 76.55 – – –  t Ring(65)1016 5.05 6.16 1021 3.92 6.08 1022 18.13 3.20 – – –  t CC(42), t Ring(18)1004 13.93 7.68 1009 0.31 3.26 1002 21.31 3.77 1005 1006 999  t CC(72), d CH 2 (20)1000 0.02 4.24 1008 23.42 5.85 1000 0.14 6.56 – – –  d CH 3 (80)992 21.92 4.19 990 1.00 1.69 996 15.07 12.75 – – –  d CH 3 (33), t CN(48)960 44.40 17.09 988 13.34 8.00 993 1.28 2.20 – – –  c CH(82), s Ring(11)950 0.71 0.50 986 1.16 1.35 991 0.39 0.90 – – –  c CH(86), s Ring(11)946 0.08 0.41 956 4.31 1.67 959 3.89 1.86 964 965 –  c CH(88)928 0.53 3.79 950 1.19 0.56 954 56.37 20.15 – – –  d CH 3 (33), t CN(38)922 3.37 1.78 941 48.07 13.33 953 0.97 0.39 941 – –  c CH(81)916 0.81 1.61 935 1.16 3.40 934 0.86 3.52 – 937 –  d CH 2 (39), t CC(57)897 0.86 3.76 907 1.81 4.82 900 1.28 4.14 904 909 912  d CH 3 (12), d Ring(24), c CH(37)888 1.44 4.41 895 1.88 3.87 890 3.38 6.64 – – –860 2.08 2.56 877 1.68 0.76 880 1.32 0.98 877 879 –  c CH(69)855 0.37 5.62 869 0.90 7.48 871 1.53 6.09 866 870 –  c CH(46), t CC(18)842 5.04 7.07 857 7.21 8.06 851 10.39 13.07 853 852 848  c C 25 H 26 (45), d CH 2 (10)832 4.37 19.90 824 0.40 22.40 824 1.44 22.23 812 815 –  d CH 2 (44), d Ring(14)783 5.73 3.00 792 10.09 2.29 787 13.21 2.75 – – –  d CH 2 (39), s Ring(22)772 4.43 2.49 784 11.99 4.88 780 13.29 3.84 783 781 783  s Ring(60)767 8.47 3.99 780 6.10 2.72 776 18.62 2.39 – – –  d CH 2 (24), c CH(20)751 56.01 6.23 763 94.85 4.90 768 103.49 5.89 – – –  c CH(58), d Ring(13)741 5.19 6.62 753 9.84 1.70 757 11.47 2.23 754 755 –  c CH(68),374  Y.S. Mary et al./Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 120 (2014) 370–380
Related Documents
View more...
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks