Funny & Jokes

11 pages
4 views

Andic properties in soils developed from nonvolcanic materials in Central Bhutan

Please download to get full document.

View again

of 11
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Share
Description
A number of soils are described in the literature as having andic and spodic soil properties, but have developed in nonvolcanic and nonallophanic materials and lack typical Podzol eluvial and illuvial horizons. They cover a wide range of parent
Transcript
  ©  2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1436-8730/05/0510-703 J. Plant Nutr. Soil Sci.  2005,  168,  703–713  DOI:  10.1002/jpln.200521793 703 Andic properties in soils developed from nonvolcanic materialsin CentralBhutan Rupert Bäumler 1 *, Thomas Caspari 2 , Kai U. Totsche 2 , Tshering Dorji 3 , Chencho Norbu 3 ,  and  Ian C. Baillie 4 1  Institute of Geography, Friedrich-AlexanderUniversity Erlangen-Nuremberg,Kochstr. 4/4, D-91054 Erlangen, Germany 2 Institute of Soil Science, Department of Ecology, Technische Universität München, Am Hochanger 2, D-85354 Freising-Weihenstephan,Germany 3  National Soil Services Centre, Ministry of Agriculture, P.O. Box 123, Simtokha, Thimphu, Bhutan 4 National Soil Resources Institute, Cranfield University, Silsoe, Bedfordshire MK45 4DT, UKAccepted July 27, 2005  PNSS P179/3B This paper is dedicated to Prof. Dr. Wolfgang Zech on behalf of his retirement to honor his impressing contribution to soil science. Summary—Zusammenfassung A number of soils are described in the literature as havingandic and spodic soil properties, but have developed in non-volcanic and nonallophanic materials and lack typical Podzoleluvial and illuvial horizons. They cover a wide range of par-ent materials and different types of climate. They havealways been regarded as restricted to small areas. Theywere assigned to Andisols/Andosols, Podzols/Spodosols, orandic Inceptisols in the WRB and Soil Taxonomy and some-times also named Cryptopodzols or Lockerbraunerden.Recent soil surveys in Bhutan, E Himalayas, show these soilsare widespread at altitudes between 2200–3500 m asl andare spanning several bioclimatic zones. The aim of this studyis the detailed characterization of specific properties and pro-cesses of formation by physical and chemical analyses, NMRspectroscopy, column experiments, SEM, XRD, and  14 C dat-ing in one of these soils in E central Bhutan. The results indi-cate advanced soil development with high amounts of oxidicFe and Al compounds, low bulk densities (partly  < 0.5g cm –3 ), P retention >85%, and a dominance of Al-hydroxy-interlayered phyllosilicates. Scanning electron microscopy ofsand fractions indicate microaggregates highly resistant todispersion. Column experiments show podzolization withmobilization and translocation of DOM, Fe, and Al. Nuclear-magnetic resonance spectroscopy and  14 C ages of 16,000BP indicate stabilization of DOM. Applying classification cri-teria, these soils appear to have andic and spodic features,but are neither Andosols nor Podzols  senso strictu.  Espe-cially the role of Fe seems to be underestimated with regardto the specific soil-forming processes. Because of their wide-spread occurrence and distinct properties, we suggest eithera simplificationof the criteria for existing soil types or a clearlydefined separationof volcanic and nonvolcanic/nonallophanicAndosols. Key words:  Andosols/ Podzols / nonvolcanic / nonallophanic / classification / Bhutan / ferro-andic Andische Eigenschaften in Böden aus nichtvulkanischem Material in Zentralbhutan In der Literatur werden Böden mit andischen und podso-lischen Eigenschaften aus nicht vulkanischem und nicht allo-phanischem Material beschrieben, die keine podsoltypischenEluvial- und Illuvial-Horizonte aufweisen. Sie sind ausunterschiedlichen Ausgangsmaterialien entstanden, kommenin verschiedenen Klimaten vor und galten bisher als wenigverbreitet. Sie wurden in die Gruppe der Andisols/Andosols,Podzols/Spodosols oder andic Inceptisols nach WRB undSoil Taxonomy eingeordnet sowie im deutschen Sprachraumals Cryptopodsole oder Lockerbraunerden klassifiziert.Neuere bodenkundliche Untersuchungen in Bhutan im öst-lichen Himalaya zeigen, dass diese Böden über mehrerebioklimatische Höhenzonen hinweg zwischen 2200 m und3500 m ü. NN flächenhaft vorkommen. Ziel der Arbeit ist es,an einem dieser Böden die spezifischen Eigenschaften undBildungsprozesse mittels physikalischer und chemischerAnalysen, NMR-Spektroskopie, Säulenexperimenten, Elekt-ronenmikroskopie, Tonmineralanalyse und  14 C-Datierungendetailliert zu beschreiben. Die Ergebnisse deuten auf fortge-schrittene Bodenentwicklung mit hohen Gehalten an oxi-dischen Fe- und Al-Verbindungen, niedrigen Lagerungsdich-ten (teils  < 0.5 g cm –3 ), hoher Phosphatbindungskapazität>85 % sowie einer Dominanz von Tonmineralen mit Al-Hydroxo-Zwischenschichteinlagerungen hin. Elektronenmikro-skopische Aufnahmen zeigen, dass die Sandfraktion über-wiegend aus extrem stabilen Mikroaggregaten besteht. DieSäulenexperimente deuten auf Podsolierungsdynamik miteiner Mobilisierungund Verlagerungvon DOM, Fe und Al hin.NMR-Spektroskopie und  14 C-Alter um 16.000 a vor heuteweisen ferner auf Stabilisierung organischer Verbindungenhin. Im Hinblick auf eine Klassifizierung erfüllen die unter-suchten Böden andische wie podsolische Kriterien, sind imengeren Sinne weder Andosole noch Podsole. Insbesonderedie Rolle von Fe scheint bei der spezifischen Bodenbildungs-bedingungen bisher unterschätzt worden zu sein. Aufgrundihrer weiten Verbreitung und den spezifischen Eigenschaftenwird eine Vereinfachung der Kriterien für bereits bestehendeBodentypen oder eine klare Trennung von Andosolen ausvulkanischen und nicht vulkanischen/nicht allophanhaltigenMaterialien vorgeschlagen. * Correspondence: Prof. Dr. R. Bäumler;e-mail: baeumler@geographie.uni-erlangen.de  1 Introduction In 1978, the andic suborder of Inceptisols (Andepts) wasrevised to introduce the new order of Andisols in the US SoilTaxonomy ( Parfitt   and  Clayden  , 1991) for soils developedfrom volcanic materials. Since then, andic and associatedspodic soil properties in many cases have been described ina range of nonvolcanic areas all over the world (Tab. 1).These soils have developed in various parent materials andunder different temperature and moisture regimes. Theirproperties seem to be related more to metal-organic com-plexes rather than to the formation or presence of short-range-order minerals like allophanes and (proto-)imogolites.However, for a long time, their geographical distribution andimportance were deemed to be restricted to small areas.Therefore, they were assigned to Andisols/Andosols in SoilTaxonomy ( Soil Survey Staff  , 1999) and World ReferenceBase for Soil Resources (WRB;  ISSS  , 1998), respectively.However, they are not good matches for these taxa and werecalled nonvolcanic and nonallophanic Andosols/Andisols(Tab. 1). Others were assigned to Podzols/Spodosols andnamed Cryptopodzols, as they generally lack the visible elu-vial and illuvial horizons of true Podzols ( Blaser   et al., 1997),or to Inceptisols/Cambisols and named andic Inceptisols orLockerbraunerden (Tab. 1).  Parfitt   and  Clayden   (1991) dis-cussed these soils as having intermediate properties “that fellinto a black hole” of classification.Soils having andic properties are generally characterized byshort-range-order minerals (imogolite or proto-imogolite andallophane) or Al-humus complexes. They must have a lowbulk density or the presence of volcanic glass within a speci-fied horizon thickness and a high P retention ( Soil Survey Staff  , 1999). They should not have a spodic horizon ( ISSS  ,1998), or, if they do, an albic horizon should also be present( Soil Survey Staff  , 1999). In the latter case, they will mergeinto the Spodosols order. Typical Andosols/Andisols seem tobe more common in regions without a distinct dry season,although Soil Taxonomy does allow for Torrands. In general,they are more characterized by  in-situ   weathering andmineral trans- or neoformations than by translocation. Al andFe are released by  in-situ   silicate weathering, and poorlycrystallized oxidic compounds develop. These may interactwith water-soluble organic compounds to form metal-organiccomplexes and polymers, which are then immobilized againstfurther translocation and stabilized against biodegradation. Incontrast to Andosols/Andisols, Podzols should form distincteluvial and illuvial horizons under strong leaching environ-ments and acid conditions ( Gustafsson   et al., 1995). In thispaper, we focus on this group of apparently anomalous non-volcanic andic soils with special reference to the specific pro-cesses of their formation and the srcin of their composite/ transitional properties between andic and spodic. This mightlead to the identification of a combination of separate soil-forming processes, which is clearly different from thoseobtaining in the Andisols/Andosols and Spodosols/Podzols senso strictu. ©  2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.plant-soil.com Table 1:  Selected literaturereferences to site conditionsof nonvolcanic Andosolsand Cryptopodzols (papers). Tabelle 1:  Standortbedingungen nicht vulkanischer Andosolsund Cryptopodzols aus ausgewählten Publikationen. Location/altitude Parentmaterial Meantemperature(°C)Mean annualprecipitation(mm)Climate Soil units Author Germany/  < 1000 m aslAcid magmatic &metamorphic rocks5–7 700–1600m cool, humid Lockerbraunerde(Andic Inceptisol) Bargon  , 1960;  Wilke  and  Becher  , 1980NW Spain Gabbro, schist,amphibolite12–14 1010–1860mm humid-temperate;mesic, udicDystrandepts,Hapludands; humicAndosols Garcia-Rodeja   et al.,1987SW Washington(US)/140–270 m aslMarine sediments(siltstones) andloess10 1500–3500mm cool maritime;rainy season inwinter; mesicAndic Haplumbrept,Typic Dystrandept Hunter   et al., 1987SE Alaska/ 10 m aslBeach gravels(phyllite, sandstone,schist, granite)– – cool, perhumid Andic Humicryodsand Haplocryods Alexander  et al., 1993E Nepal/ 2800 m aslMica schist 8.5–9 2000–2500mm monsoonclimate;ustic, mesic;dry winter seasonDystric Haplustands  Bäumler   and  Zech  ,1994S Switzerland/ 515 and 1000 m aslgneiss 6–11 1800 mm dry winters; rainfallmaximum insummerCryptopodzols,Haplic Podzols Blaser   et al., 1997E France/ 835–1110 m aslGranite, plutonites,porphyrite7–7.5 1200–2000mm humid; udic,mesic-cryicAlic Fulvudands,Andic Haplumbrepts Aran   et al., 1998S India/ 2000–2500m aslRegoliths(lateritic);precambriancharnockites15 2500 mm cool, humid(monsoonal); 2–3-month dry seasonnonallophanicAndisols Caner   et al., 2000 704 Bäumler, Caspari, Totsche, Dorji, Norbu, Baillie  J. Plant Nutr. Soil Sci.  2005,  168,  703–713  2 Materialsand methods 2.1 The study site The soils analyzed are common on the S slopes of the EHimalayas, extending at least from E Nepal to the E border ofBhutan. They occur within the altitude range between 2200and about 3500 m asl and vertically over several bioclimaticzones from temperate broad-leaf forests to the upper mixedconifer and silver fir forests. The area is characterized by aclimate with a strong daily freeze-thaw alternation from lateautumn to early spring.This zone is dominated by bright reddish yellow, almostorange colored deeply weathered soils. They have crumbstructures, friable consistence, thixotropic properties, extre-mely high porosities, extremely low bulk densities, and highamounts of organic C throughout the solum ( Baillie   et al.,2004). They are probably influenced by aeolian deposits inBhutan and possibly elsewhere in the E Himalayas.The study site is located in the Lame Gompa Research For-est; Bumthang district in E central Bhutan. The Forest is cov-ered by dense mixed conifer and silver fir forests up to thetree line on the ridges at about 4000 m asl ( BSSP  , 2000) with Pinus wallichiana  ,  Abies spectabilis, Tsuga dumosa, Picea spinulosa  , and various  Rhododendron   species as dominanttree species. The climate is monsoonal with mean annualtemperatures about 7°C at 2900 m asl. The mean annual pre-cipitation amounts to 1100 mm (1994–1997) at the same alti-tude, with the maximum during summer. Parent materialsconsist of mica schist of the Thimphu Gneiss Group withquartzite beds and quartz veins, and the landscape is partlycovered by aeolian deposits ( BSSP  , 2000;  Caspari   et al.,2002;  Baillie   et al., 2004).Bulk and core samples were taken from each horizon of arepresentative profile of these nonvolcanic andic soils at3025 m asl (90°43.98 ′  E; 27°32.19 ′  N;  BSSP  , 2000). 2.2 Methods All analyses were done on air-dried < 2 mm samples in dupli-cate. Organic C (C org ) and total N (N tot ) were measured bycombustion (ELEMENTAR vario EL). Soil pH was determinedin 1 M KCl and H 2 O at a soil : solution ratio of 1:2.5 and pH NaF according to  Blakemore   et al. (1987). Exchangeable cationswere extracted and cation-exchange capacity (CEC) wasmeasured in unbuffered 0.5 M NH 4 Cl ( Trüby   and  Aldinger  ,1985). Pedogenic Fe d  and Al d  compounds were extractedwith dithionite-citrate-bicarbonate (DCB) solution ( Mehra   and Jackson  , 1960), acid ammonium oxalate solution ( Schwert- mann  , 1964; to give Al o , Fe o , Si o ), and in pyrophosphatesolu-tion ( Aleksandrova  , 1960; Fe p , Al p ) after ultracentrifugation at18,000  g   adding Superfloc as flocculating agent. The optical-density index of the oxalate extract (ODOE) was determinedphotometrically at 430 nm. For particle-size analysis, thesamples were treated with H 2 O 2  (30%) to remove organicmatter and with sodium pyrophosphate and ultrasonic treat-ment for dispersion. Sand fractions were separated by wetsieving, silt and clay fractions were determined using theSedigraph5100 (Fa. Micromeritics). Phosphate retention (Pretention) was measured by the method described by  Blake- more   et al. (1987). Clay-mineral analyses (XRD) were carriedout after  Moore   and  Reynolds   (1989) on oriented samples(Co-K a ; Philips diffractometer PW1830) after saturation withMg 2+  (air-dried), Mg 2+  + glycerol (110°C), and K +  (air-driedand stepwise heated to 560°C). Radiocarbon analyses of soilorganic matter (SOM) of subsoil horizons were done by theLeibniz Laboratory for Radiometric Dating and Stable IsotopeResearch, Kiel. Solid-state CPMAS  13 C-nuclear-magneticresonance (NMR) spectroscopy was conducted to provideinformation about the SOM composition in comparison withPodzols (Bruker DSX 200 spectrometer).Scanning electron microscopy (SEM) and element mappingwere done by using the JSM-5900LV (Fa. JEOL, Peabody,MA, US). To study the release and transport of dissolvedorganic carbon (DOC), Al, and Fe, column experiments wereperformed with soil materials of the AB and B2 horizon(Tab. 2). The columns were packed with air-dried  < 2 mmfraction of the particular horizons and saturated with a back-ground solution (BG) from bottom to top at a low flow rate ofone pore volume per week to prevent entrapment of air. Thebackground solution contained 10 –5 Mol m –3 NaClO 4  toadjust the ionic strength and 10 –6 Mol m –3 NaN 3  to preventmicrobial activity. A monovalent cation was chosen to adjustto the natural rainwater chemistry at the southern slopes ofthe Himalayas with a dominance of marine aerosols from theBay of Bengal during the predominant monsoonal rains andto prevent artificial DOC immobilization by polyvalent cations( Münch   et al., 2002). Flow interruptions were conducted todetect possible kinetic limitations within a mobilization pro-cess. A pulse of deionized water should reveal effects of verylow ionic strength on the release of soil-borneDOC and metalcations matching the actual conditions during the monsoonseason. Chloride (1.2 Mol m –3 ) was used as a conservativetracer to evaluate the transport regime. Column dispersivitieswere estimated by fitting the advection-dispersionequation tothe Cl – breakthrough curve using CXTFIT ( Parker   and  van Genuchten  , 1984). Details on the design and performance ofthe column experiments are given in  Weigand   and  Totsche  (1998) and in  Münch   et al. (2002). ©  2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.plant-soil.com Table 2:  Main parametersof the column experiments. Tabelle 2:  Hauptparameter für die Säulenversuche. Horizon Parameter Symbol unit AB B2Column length  L  [mm] 100 100Column diameter  d   [mm] 39.7 39.7Bulk density  db   [g cm –3 ] 0.73 0.82Pore volume  PV   [mm 3 ] 7.79E+04 7.54E+04Theta  h  [–] 0.63 0.61Volumetric Flow  Q   [mm 3 s –1 ] 2.67 2.67Mean pore-watervelocity v v   [mm s –1 ] 3.48E–03 3.61E–03Tracer concentration  C  0   [mmolmm –3 ]1.23E–05 1.23E–05 J. Plant Nutr. Soil Sci.  2005,  168,  703–713 Soils developedfrom nonvolcanicin Central Bhutan 705  3 Results and discussion pH KCl  values vary between 4.0 and 4.9 (Tab. 3). Theyincrease with depth and are 0.5–0.9 units lower than pH H 2 O .The pH H 2 O  values are > 4.9 except of the two upper horizons,which is generally considered the lower limit for the formationof short-range-order minerals of the allophane and imogolitetypes ( Shoji   and  Fujiwara  , 1984). The soils have extremelylow bulk densities of 0.5–0.8 g cm –3  down to 1.5 m depth,which is typical for soils having andic properties.CEC at field pH varies between 0.5 and 14 cmol c kg –1 anddecreases sharply below the AB horizon. Even in the top hori-zons, the values are low, considering the high contents oforganic C and clay. It may point to high variable and/or posi-tive charge, as shown by  Gustafsson   et al. (1995) for imogo-lite-type minerals in Podzol B horizons. There is a dominanceof Ca 2+  and Al 3+  on the exchange sites of all horizons. Thedistinct maxima of Ca in the A horizon and Al in the AB hori-zon are causedby biogeniccycling (Ca 2+ ) and the low pH val-ues (Al 3+ ). In the AB horizon the Al saturation amounts to79%, but drops to 25% with increasing depth.Organic-C values are high throughout the solum continuouslydecreasing with depth. But even in the B3 horizon, the valuesare >1%, which is a typical feature of andic and “cryptopodzo-lic” soils ( Blaser   et al., 1997). No second maximum indicatingilluvial processes could be observed. There is a strong corre-lation with N tot , and C : N ratios vary between 22 and 11.Except for the lowest horizon, P retention is >85%. ODOEvalues were >0.25 throughout the profile. pH NaF , which is notused as a classification criterion for Andisols anymore, is>10.5 in all horizons, slightly increasing with soil depth. Allthree properties are in accordance with andic and spodic fea-tures and indicating a predominance of amorphous andorganic compounds.Particle-size fractions appear to indicate a regolithic disconti-nuity between the AB and B1 horizons, with a dominance of ©  2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.plant-soil.com 010002000300005101520   c  o  u  n   t  s 400°C25°C200°C560°C A 0100020003000400005101520      c     o     u     n       t     s  AB400°C25°C200°C560°C 0500100015002000250005101520      c     o     u     n       t     s B2400°C25°C200°C560°C 0500100015002000250005101520      c     o     u     n       t     s B3400°C25°C200°C560°C 01000200005101520 2 Theta (CoK a )      c     o     u     n       t     s B1400°C25°C200°C560°C 01000200030004000500005101520 2 Theta (CoK a )      c     o     u     n       t     s CB400°C25°C200°C560°C Figure 1:  X-ray diffraction pattern of the potassium-saturated clay fraction of all horizons at different temperatures. Abbildung 1:  XRD-Tonmineralanalyse der kaliumgesättigten Tonfraktion aller Horizonte bei verschiedenen Temperaturen. 706 Bäumler, Caspari, Totsche, Dorji, Norbu, Baillie  J. Plant Nutr. Soil Sci.  2005,  168,  703–713   © 2  0  0  5 WI   L E Y -V  C HV  er  l    a  g Gm b H &  C  o.K  G aA  ,W ei   nh  ei   mwww.  pl    an t   - s  oi   l   . c  om Table 3:  Analytical data of the soil from the Lame Gompa Forest Area (central Bhutan). Tabelle 3:  Ergebnisse der Bodenanalysen aus dem Lame-Gompa-Waldgebiet (Zentralbhutan). Horizon Depth cm Color (moist) Color (dry) pH (KCl) pH (H 2 O) Bulk density g cm –3 CEC eff cmol c kg –1 C org gkg –1 N tot gkg –1 C : N ratio P Ret. % ODOE pH (NaF)A 0–17 2,5Y3/2 10YR3/3 4.0 4.8 0.49 13.96 116.9 6.2 18.9 91 >4.0 10.5AB 17–24 2,5Y4/4 10YR4/4 4.0 4.8 0.59 9.19 57.7 2.6 22.2 88 2.93 10.9B1 24–49 10YR6/8 10YR6/4 4.6 5.1 0.46 1.46 22.7 1.5 15.1 99 2.83 11.3B2 49–101 10YR5/8 10YR6/6 4.9 5.4 0.69 0.49 21.8 1.4 15.6 99 >4.0 11.7B3 101–148 10YR5/8 10YR6/8 4.9 5.7 0.84 0.59 12.0 1.0 12.0 94 1.80 11.5CB 148–200+ 10YR6/8 2,5Y6/4 4.6 5.5 1.24 1.01 4.5 0.4 11.3 46 0.33 11.0 Horizon Depth cm Fe d  Al d  Fe o  Al o  Si o  Fe p  Al p  exchangeable cations gkg –1 cmol c kg –1 Na + K + Ca 2+ Mg 2+ Mn 2+ Al 3+ A 0–17 28.6 10.9 11.9 8.5 0.4 31.2 9.3 0.03 0.33 6.21 1.0 0.12 5.87AB 17–24 31.8 8.9 11.8 7.5 0.3 35.1 9.5 0.01 0.10 1.51 0.28 0.03 7.26B1 24–49 41.3 12.3 9.6 15.5 3.7 14.7 7.2 0.02 0.04 0.34 0.12 0.01 0.93B2 49–101 36.7 13.1 7.1 17.9 1.2 10.9 6.3 0.02 0.06 0.21 0.02 0.01 0.17B3 101–148 32.3 8.3 13.7 11.5 0.8 20.9 5.8 0.01 0.04 0.24 0.05 0.01 0.15CB 148–200+ 15.5 3.3 6.6 2.4 0.3 9.3 1.9 0.02 0.05 0.29 0.17 0.02 0.46 Horizon Al o +½ Fe o (%)Fe o  : Fe d  Fe p  : Fe d  Al p  : Al d  Al o  : Si o  Al p  : Al o  Fe p  : Fe o  Al o –Al p  : Si o  Coarse sand(%)Medium sand(%)Fine sand(%)Coarse silt(%)Medium silt(%)Fine silt(%)Clay(%) A 1.44 0.42 1.09 0.85 18.8 1.10 2.61 –1.89 1 2 8 10 13 14 52AB 1.34 0.37 1.10 1.07 22.6 1.28 2.98 –6.30  < 1 1 8 8 16 17 50B1 2.04 0.23 0.36 0.58 4.2 0.46 1.52 2.24  < 1 8 11 7 14 22 38B2 2.15 0.19 0.30 0.48 14.4 0.35 1.55 9.32 2 16 13 8 13 20 28B3 1.83 0.42 0.64 0.70 13.8 0.51 1.53 6.78 1 5 14 8 15 20 37CB 0.57 0.42 0.60 0.59 7.9 0.82 1.41 1.4 22 21 16 4 7 8 22Horizon designations are according to WRB ( ISSS  , 1998)  J  .P l     an t   N u t   r  . S  oi    l     S  c i    . 2  0  0  5  , 1  6  8  , 7  0  3 –7 1  3  S  oi   l    s  d  ev  el    o  p e d f   r   omn onv  ol    c  ani    c i   n C  en t   r   al   B h  u t    an7  0 7 
Related Documents
View more...
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks
SAVE OUR EARTH

We need your sign to support Project to invent "SMART AND CONTROLLABLE REFLECTIVE BALLOONS" to cover the Sun and Save Our Earth.

More details...

Sign Now!

We are very appreciated for your Prompt Action!

x